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Featured Application: The results obtained in this work provide a useful set of benchmark data 
to interpret experimental results and to inform design efforts of slit-based structures in the 
terahertz range. The present method of analysis can also be applicable to problems involving 
multiple slits with different widths. 

Abstract: This article investigates resonant transmission phenomena through a single metallic 
subwavelength slit when the permittivity of a real metal varies. The single metallic slit is utilized as 
a metal–insulator–metal waveguide, and a mode-matching technique is employed to obtain the 
transmitted power. The periodic resonant transmission phenomena (in terms of the metallic plate 
thickness) are solved, and the resonances can be understood by their guide wavelengths. Even when 
the permittivity of the real metal includes imaginary parts (i.e., metal with loss), the resonant 
transmittances are obtained. However, the peaks of the transmittances decrease, as the plate 
thickness increases. The orthogonal relationship of an incomplete orthogonal set is maintained 
despite metallic loss (given a relatively small amount of loss), due to the complex permittivity of the 
real metal. 

Keywords: transmission cross-section; metal–insulator–metal waveguide; mode-matching 
technique 

 

1. Introduction 

Electromagnetic resonant transmission through one- or two-dimensional slits has been 
discussed for several decades, and research on extraordinary optical transmission [1–4] has led to 
significant physical and practical achievements. In earlier research [5,6], perforated metallic plates 
are generally assumed to be perfect electric conductors (PECs), and corresponding resonant 
transmission characteristics through PEC slits were investigated. However, studies were limited to 
the microwave or millimeter-wave regimes and did not extend to the terahertz (THz) range. 
Therefore, it remains important to investigate resonant transmission phenomena through real 
metallic slits by considering actual permittivities of metals, when the frequency goes beyond the 
microwave range. To extend transmittance study to the THz range, the geometry of a metal–
insulator–metal (MIM) waveguide was adopted, and the resulting modes formed in the MIM 
waveguide were examined. The resonant transmission phenomena were then systematically 
analyzed through a real metallic slit in the THz range [7–9]. Thanks to this fundamental research, 
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resonant transmission phenomena have been investigated at wide THz frequencies by taking into 
account actual permittivities for various real metals [10,11] and discussing transmittances through 
periodic metallic slits [12]. These studies found that transmittance phenomena through metallic slits 
are similar to those in PEC cases at lower frequencies. However, large discrepancies are apparent at 
higher THz frequencies [10]. 

Slit transmittances in wide THz ranges can usually be solved easily via the finite-difference time-
domain (FDTD) or finite element method [13,14] and etc [15,16]. While transmittance results can be 
obtained directly under those methods, their physical meanings are not easily understood using such 
“brute-force” numerical techniques. Brute-force numerical techniques require substantial numbers of 
mesh grids, causing corresponding numerical dispersion errors to increase gradually at higher 
frequencies [14]. By contrast, the mode-matching technique (MMT) does not require grids and, 
consequently, has no dispersion errors. The MMT also provides physical meanings by obtaining the 
guide wavelengths of an MIM waveguide, making it easy to understand the resonant transmittance 
as a function of the metallic plate thickness. Once the eigenvalues for the geometry are obtained 
herein, then the transmittances as a function of the plate thickness can be resolved easily. 

Since electromagnetic waves do not penetrate into a PEC, no mode in the PEC region needs to 
be accounted for. For actual metallic plates, however, modes in the metallic region should be 
considered, because a tiny amount of each mode permeates into the metallic region due to their finite 
conductivities. To be precise, modal components in the metallic region (as well as the slit region) 
should be fully considered when solving transmittances. In addition, for the finite conductivity of a 
metal, orthogonal properties are not completely satisfied, while the orthogonality for the PEC MIM 
waveguide is completely fulfilled. Therefore, a validation issue of slit transmittances could be raised 
for real metallic slits in accordance with orthogonality. 

In this research, the procedure obtaining the transmittances by the MMT is as follows. First, the 
modes constituting each region in the free space and an MIM waveguide need to be obtained in 
advance. To calculate modal eigenvalues in the MIM waveguide, a dispersion equation should be 
applied [9]. Then, tangential incident, reflected, and transmitted electromagnetic fields are set to be 
continuous at each junction. The unknowns in the electromagnetic field equations can be solved 
though the system of equations, and the reflection and transmission coefficients can be determined. 
The overall reflected and transmitted electromagnetic fields of a single-slit geometry can be obtained 
by using multiregion problems. The entire computing procedure is listed and explained in detail in 
[10]. 

The results using the MMT in this paper have several unique features compared to previous 
studies in the following aspects. First, resonant transmittance patterns are studied in detail as a 
function of the permittivity of a real metal, when the metal is lossy. Then, periodic transmission peaks 
and attenuations are examined, as the thickness of the plate increases. We also observe changes in 
guide wavelengths and resonant transmittances, as the imaginary part of the permittivity of the metal 
decreases, which cannot be obtained by other numerical techniques, such as the FDTD method or 
finite element method. Finally, orthogonal relations are thoroughly studied for lossless and lossy 
metallic plates.  

These resonant transmissions or extraordinary transmissions can be applied to practical devices 
like band-selective spatial filters [17,18] and chemical sensors [19,20]. In addition, controllable dual 
transmissions have attracted significant attention to research societies, because these phenomena can 
be practically applicable to research areas such as switching, sensing, polarimetry microscopy, 
hyperspectral imaging, and security encryption [21–26]. 

In this paper, a dispersion equation applied into the MMT formulation is explained first. Two 
transmission quantities are subsequently introduced, before the transmittances for lossless metals are 
obtained. Transmission characteristics for the lossy metal case are then computed, and the results are 
compared with the lossless case. The modal orthogonal relation, which is an important prerequisite 
of the MMT, is finally discussed when considering both lossy and lossless metals. 

2. Transmission Cross-Sections (TCSs) through a Subwavelength Slit for a Lossless Conducting 
Plate 



Appl. Sci. 2020, 10, 660 3 of 11 

Figure 1 shows the geometry of an MIM waveguide, including a gap width of 2g and a metal 
plate thickness of d. In this section, 2g is fixed as 0.03λ0, while d is a variable and the structure is 
constant along the y-axis. An electromagnetic plane wave with parallel polarization propagates along 
the z-axis. In the metallic region, the permittivity of the metal εr is generally negative and will be 
varied in this work to investigate resonant transmittances. We consider only even modes, because 
even modes are sufficient for describing normal incidence in the MIM waveguide.  

 

Figure 1. Geometry of a single metallic slit. 

The dispersion equation is the most fundamental equation in the MIM waveguide and obtained 
as follows [10]: 

tanh(κi,ng) = –(κm,n × εr,i)/(κi,n × εr,m), (1) 

where (kz,n)2 = (κm,n)2 + ω2μεr,m = (κi,n)2 + ω2μεr,i, (2) 

where εr,m and εr,i are permittivities in the metal and the insulator, respectively, κm,n and κi,n are nth 
transverse propagation constants in the metal and the insulator, respectively, and kz,n is the nth 
propagation constant along the z-axis. The subscripts n in κm,n, κi,n, and kz,n commonly indicate the nth 
modes, which are coupled to one another in Equation (2). The roots {κm,n}s of the dispersion equation 
are found using Muller’s method [10] while varying the geometrical parameter of 2g and the relative 
permittivity of εr,m for the metal. 

The TCS transmitted into the right free space is defined as: 

TCS[𝑚𝑚] = 𝑃𝑃𝑡𝑡
𝑊𝑊𝑖𝑖

= 1
2𝑊𝑊𝑖𝑖

∫ 𝑅𝑅𝑅𝑅[𝐸𝐸�⃗ × 𝐻𝐻��⃗ ∗] ⋅ (�⃗�𝑎𝑧𝑧𝑑𝑑𝑑𝑑)𝑆𝑆 , (3) 

where Pt and Wi are transmitted power (W) and incident power density (W/m), respectively. As 

another quantity, the transmittance into the right free space is also widely used [6,10] and defined as: 

𝜏𝜏[dimensionless] = 1
2𝑔𝑔

𝑃𝑃𝑡𝑡
𝑊𝑊𝑖𝑖

= 1
2𝑔𝑔
⋅ 1
2𝑊𝑊𝑖𝑖

∫ 𝑅𝑅𝑅𝑅[𝐸𝐸�⃗ × 𝐻𝐻��⃗ ∗] ⋅ (�⃗�𝑎𝑧𝑧𝑑𝑑𝑑𝑑)𝑆𝑆 . (4) 

From Equation (3), the TCSs were obtained by the MMT and plotted in Figure 2(a)–(d) as a 
function of the permittivities of real metals. Figure 2(a) shows the TCS through a PEC slit versus the 
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thickness of a metallic plate of d. The maximum periodic TCSs are observed at a plate thickness of 
(0.486 + 0.5n)λ0, where n is an integer. Figure 2(b)–(d) shows the TCSs in terms of thickness of the 
metallic plate when the permittivities of a metal εr,m are –2000, –100, and –5, respectively. The 
maximum periodic TCSs in Figure 2(b)–(d) are also observed at specific thicknesses of the metallic 
plate. The value of the maximum TCS for the PEC case in Figure 2(a) is found to be about 0.3183, 
which is the same as a known theoretical value [27]. By contrast, the maximum TCSs in Figure 2(b)–
(d) do not reach the theoretical TCS value, because the incident wave from Figure 1 is slightly 
absorbed into the metallic plate. This could be understood by the fact that a lower metallic 
permittivity causes greater incident wave absorption into the metallic region [9]. From Equation (4), 
the transmittance τ is obtained as described in the inset of Figure 2(a). While the pattern is the same 
as the TCS, numerical values and transmitting units are different, as represented in Equation (4). 

 

Figure 2. Transmission cross-sections (TCSs) for various permittivities: (a) metal which is a perfect electric 
conductor (PEC); (b) εr = –2000; (c) εr = –100; and (d) εr = –5. The transmittance for the PEC case is shown in 
the inset of (a). 

Guide wavelengths are helpful to understand resonant transmission characteristics and can be 
solved from Equations (1) and (2). The guide wavelength λg for each MIM waveguide in Figure 1 is 
listed in Table 1. The values of λg for cases of low permittivity are relatively great, while the λg values 
for high permittivity cases are smaller. Meanwhile, the intervals of TCSs peaks were obtained as 0.5λ0 
and 0.1650λ0 for the PEC and the metallic permittivity of –5, respectively, as found in Figure 2. These 
intervals, computed by the MMT, are exactly the same as 1/(2λg), as listed in the last column of Table 
1. Therefore, resonant transmission phenomena were systematically solved as a function of metallic 
permittivity, and their periodicity can be easily understood.  

Table 1. Guide wavelengths with respect to metallic permittivities and computed maximum TCS 
intervals. 
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Permittivities in Metal Guide Wavelength (ΛG) Maximum TCS Interval 
PEC 1.0λ0 0.5λ0 

εr = –2000 1.1124λ0 0.4495λ0 
εr = –100 1.4406λ0 0.3471λ0 
εr = –5 3.0307λ0 0.1650λ0 

3. Transmittance through a Subwavelength Slit on a Real Metallic Plate 

In Section 2, transmittance results were obtained, when a metal was a PEC or lossless conductor 
having a finite conductivity, and transmittances for lossy metals are discussed in this section. Figure 
1 is again adopted for the geometry, but the conductor is changed into a realistic metal characterized 
by a finite conductivity with loss, which depends on the function of THz frequencies. The relative 
permittivity of a real metal has not only a real part, but also an imaginary part considering metallic 
loss. The metal we deal with is silver (Ag), and its relative permittivity is –14.88 – j0.39 when λ0 = 
582.08 nm [29]. The complex numbered εr,m can be inserted into the dispersion equation known as 
Equation (1). The corresponding transverse propagation constants (κm,n and κi,n) and propagation 
constant (kz,n), which are all complex numbers, can then be easily solved. The reflection and 
transmission coefficients at each boundary can be subsequently calculated by the MMT, obtaining 
the overall transmission results [9–12]. 

The transmittances are represented by Figure 3(a) and 3(b), when the gap widths 2g become 4 
and 8 nm, respectively. The transmittances are investigated by gradually reducing, and finally 
eliminating, the imaginary part of εr,m, even if the actual relative permittivity at λ0 = 582.08 nm is 14.88 
– j0.39 [28]. Figure 3(a) shows the transmittances through a subwavelength slit versus the thickness 
of a metallic plate when the gap width 2g is 4 nm (~0.0069λ0). With no imaginary part in εr,m, 
periodically obtained peak transmittances are maintained although the thickness of the plate 
increases, because there is no metallic loss, producing the same result trend shown in Figure 2. By 
contrast, resonant peak transmittances are gradually reduced as the imaginary part of εr,m increases. 
This can be understood that increasing the plate thickness makes electromagnetic waves to pass 
through the metal over a longer distance, causing more power to be lost due to metallic loss. As the 
imaginary part of the relative permittivity increases up to –j0.39, attenuation phenomena can be 
observed clearly.  

 

 

Figure 3. Transmittance as a function of Ag plate thickness: (a) 2g = 4 nm; (b) 2g = 8 nm. The blue 
asterisks are remarked from [28], when εr,m = –14.88 – j0.39. 

Figure 3(b) shows the transmittances by varying the relative permittivities, when the gap width 
2g becomes 8 nm (0.0137λ0). The resonant plate thicknesses are maintained despite increased 
imaginary parts of the permittivities, and the peak transmittances are gradually reduced as the 
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imaginary part of εr,m increases. However, the interval, at which resonant peaks occur, is increased 
compared to the interval in Figure 3(a). This can be understood using Table 2, which shows the guide 
wavelengths as functions of the gap width 2g and the relative permittivity of Ag. From each value, 
the real part of the guide wavelength represents the interval of the periodic transmission peaks, and 
the imaginary part stands for the attenuation of their peaks. As the real part of the guide wavelength 
increases, the interval of the transmission peaks decreases, as shown in Figure 3, illustrating the same 
principle as Table 1. Consequently, as the imaginary part of the guide wavelength increases, the 
attenuation of the transmission peaks also increases. When the relative permittivity has only a real 
part, constant maximum transmission peaks in Figure 3(a) and 3(b) are found. The maximum 
transmission peaks are obtained as 29.23 and 14.55, when the gap widths are 4 and 8 nm, respectively. 
It is important to understand the meaning of these values. First, 29.23 times the incident power 
density for the gap width of 4 nm [S1] is transmitted into the opposite (right-hand) region in Figure 
1. The same applies to 14.55 times the incident power density for the gap width of 8 nm [S2] in Figure 
3(b). Whenever the resonant conditions for both cases are satisfied, the constant width (m) times the 
incident power density (W/m) is transmitted into the opposite region, regardless of the width of the 
subwavelength slit. In other words, the incident power density having a constant width, which is 
much wider than that of the subwavelength slit, is transmitted into the right side of Figure 1 
regardless of the gap width 2g, when the resonant condition (thickness of the plate) is satisfied. 

Table 2. Guide wavelengths (λg) with respect to the Ag permittivity and modified permittivities, 
when the gap width 2g of 4 and 8 nm are used. (εr = –14.88 – j0.39 at λ0 = 582.08 nm [28].). 

Permittivities of Metal 2g = 4 nm 2g = 8 nm 
εr = –14.88 4.3822 2.9284 

εr = –14.88 – j0.13 4.3820 – j0.0194 2.9283 – j0.0093 
εr = –14.88 – j0.26 4.3815 – j0.0388 2.9281 – j0.0185 
εr = –14.88 – j0.39 4.3805 – j0.0582 2.9277 – j0.0277 

It is necessary to mention the blue asterisks in Figure 3(a), which are remarked from [29]. The 
transmittances versus the thickness of the Ag plate are obtained when Ag is –14.88 – j0.39 (at λ0 = 
582.08 nm), which is the same relationship as indicated by the blue solid line using the MMT. The 
overall transmittance levels are similar to each other, and the intervals of the maximum 
transmittances are also analogous. The maximum transmittances are observed at different resonant 
thicknesses of the plate, and the difference between [29] and our result is roughly 0.02λ0. 
Furthermore, the maximum transmittance markers increase, even though the thickness of the plate 
increases. This is unnatural, because the electromagnetic wave passing through the slit should be 
dissipated more as the plate thickness increases. On the contrary, the maximum transmittances by 
the solid lines of our work gradually decrease and are physically agreeable. Therefore, the 
transmittances of our work are more convincing than those of [29]. 

4. Orthogonality and Discussions 

When the metal of an MIM waveguide is a PEC, field profiles of entire modes (including a 
transverse electromagnetic mode) can be expressed easily, and the sinusoidal modal variations are 
found in the slit of the waveguide, while field profiles cannot be expressed in the PEC region. The 
orthogonal property is completely satisfied, because inner products among the sinusoidal harmonics 
in the silt are perfectly orthogonal. (In this work, only cosine functions are considered, because only 
a normally incident wave is dealt with.) The n-th modal electromagnetic fields of the parallel plate 
waveguide in Figure 4 (a) can be expressed as follows: 

𝐻𝐻𝑦𝑦𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑑𝑑( 𝛾𝛾𝑛𝑛𝑥𝑥)𝑅𝑅−𝑘𝑘𝑛𝑛𝑧𝑧, (5) 

 𝐸𝐸𝑥𝑥𝑛𝑛 = − 1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕𝐻𝐻𝑦𝑦𝑛𝑛

𝜕𝜕𝑧𝑧
 , (6) 

 𝛾𝛾𝑛𝑛 = 2𝑛𝑛𝑛𝑛
2𝑔𝑔

   and   𝑘𝑘𝑛𝑛 = �𝛾𝛾𝑛𝑛2 − 𝜔𝜔2𝜇𝜇𝜇𝜇,𝑛𝑛 = 0,1,2,⋯ . (7) 
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From the geometry in Figure 4(a), the field profiles of the first three even modes are described in 
Figure 4(b). Note that the scales are different for the slit (white) and metal (light orange) regions. By 
applying higher-order modes and the first three modes into the MMT, the transmittances are solved. 
The orthogonal properties among the modes are calculated and confirmed from the following 
equations [30]: 

1
𝜂𝜂0

𝑘𝑘0
𝑘𝑘𝑛𝑛

1
2𝑔𝑔 ∫ �𝐸𝐸𝑥𝑥𝑛𝑛(𝐻𝐻𝑦𝑦𝑚𝑚)∗�𝑑𝑑𝑥𝑥𝑔𝑔

−𝑔𝑔 = 𝛿𝛿𝑛𝑛𝑚𝑚, (8) 

 𝛿𝛿𝑛𝑛𝑚𝑚 = �1,𝑛𝑛 = 𝑚𝑚
0,𝑛𝑛 ≠ 𝑚𝑚 . (9) 

From Equations (8) and (9), the calculated result is 1 when the modes are the same, and 0 when 
the two modes are different. Therefore, the orthogonal property is completely satisfied, when the 
metal of the MIM waveguide is a PEC. When the metal has a finite conductivity, the geometry of the 
single slit can be depicted by Figure 4(c) with the blue-colored metallic region and the corresponding 
field profiles shown in Figure 4(d) and 4(e). The equations for the field profiles are represented as [9]: 

𝐻𝐻𝑦𝑦𝑛𝑛 = �
𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜅𝜅𝑖𝑖,𝑛𝑛𝑥𝑥)
𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝜅𝜅𝑖𝑖,𝑛𝑛𝑔𝑔)

𝑅𝑅−𝑘𝑘𝑧𝑧,𝑛𝑛𝑧𝑧, 0 < 𝑥𝑥 < 𝑔𝑔

𝑅𝑅−𝜅𝜅𝑚𝑚,𝑛𝑛(𝑥𝑥−𝑔𝑔)𝑅𝑅−𝑘𝑘𝑧𝑧,𝑛𝑛𝑧𝑧 ,𝑔𝑔 < 𝑥𝑥 < ∞
. (10) 

By inserting εr,m into Equations (1) and (2), the n-th transverse propagation constants (κi,n and 
κm,n) and the n-th propagation constant (kz,n) are easily obtained. The field profiles can then be 
obtained from Equation (10) and are described in Figure 4(d) and 4(e), which stand for the field 
profiles of a point spectrum (PS) and a discretized continuous spectrum (DCS) [9], respectively. The 
PS and DCS correspond to the guided and radiation modes in the dielectric slab waveguide, 
respectively. The PS can describe the sinusoidal electromagnetic field patterns mainly in the 
“insulator”, while the DCS depicts the sinusoidal field patterns mainly in the “metal” region [9,10]. 
The right-hand side of Equation (8), for a metal having a finite conductivity, is not solved exactly as 
1 or 0, which indicates the orthogonality is not perfectly satisfied, but the modes are applied into the 
MMT and the corresponding transmittances are solved. 
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Figure 4. Geometries of different metal–insulator–metal (MIM) waveguides for gap width 2g = 8 nm, 
when a transverse magnetic (TM) polarized electromagnetic wave is normally incident: (a) a PEC as 
the conducting material in the MIM waveguide and (b) the corresponding field profiles of the guided 
modes (transverse electromagnetic (TEM), TM2, and TM4 modes); (c) a practical metal as the 
conducting material in the MIM waveguide, such as silver and the corresponding field profiles for a 
point spectrum (PS) (d) and a discretized continuous spectrum (DCS) (e). Note that different scales 
are shown within the periods of (b) and (d). 

The field profiles of the PS and the DCS are described in Figures 4(d) and 4(e), respectively, 
where the gap width 2g is 4 nm and εr,m is –14.88. Figure 4(d) shows the field profiles for the first 
mode of the PS and may correspond to the first field profile of Figure 4(b). The field shape in the 
white insulator region is almost maintained; however, the field shape in the sky-blue metal region is 
different. The field at the boundary between the insulator and the metal penetrates into the metal 
region, because the metal is no longer a PEC. Figure 4(e) describes the field profiles of the first, second, 
and third modes of the DCS. The field profiles represent sinusoidal harmonics in the metal region, 
and various field patterns in the metal region can be described by superposition of the modes in the 
DCS. 

The numbers of the PS and the DCS used in the MMT formulation are 1 and 50, respectively. 
Only one mode of the PS is applied to solve the transmittance, because the slit is too narrow compared 
to the wavelength. That being said, a sufficient number of modes of the DCS should be applied, given 
the wideness of the metal region compared to that of the slit region [12]. The sufficient number of 
DCS modes is obtained as follows: We start to apply 5 trial DCS modes and investigate the reflection 
and transmission coefficients. Computing the coefficients by increasing the number of the DCS 
modes to 5 are repeated, and then the coefficients are arranged with respect to the number of DCS 
modes. Once the convergence is found, the updated number of the DCS modes are obtained. 

From the viewpoint of orthogonality, the PS and the DCS are clearly independent, because the 
field patterns of both are formed in different regions; therefore, the result of Equations (8) and (9) 
between the two approaches 0. However, the orthogonal properties among 50 DCS modes require 
investigation, since the metal is not a PEC. Figure 5 indicates in Figure 5a the results of Equations (8) 
and (9) of the first 10 DCS modes when εr,m of the MIM waveguide is –14.88. Each cell represents the 
result of Equations (8) and (9) between two modes. What we need to pay attention to Equations (8) 
and (9) for the MIM waveguide is the interval of integration. The interval should cover the entire 
waveguide junction including the metal region as well as the gap region of 2g, while the interval of 
integration 2g in Equations (8) and (9) is still valid in the case of the PEC waveguide. The diagonal 
components approach approximately 1 when the DCS modes used in Equations (8) and (9) are 
identical, while the off-diagonal results go to approximately 0 when the modes differ. For the first 10 
modes of the DCS, the values from Equations (8) and (9) are within [1.0082, 1.0111] for the same 
modes, whereas the values are within [4.878 × 10–5, 0.00340] for different modes. These computed 
results are still effective up to the next 40 DCS modes. 
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Figure 5. Orthogonal relationships among the first ten DCS modes for gap width 2g = 4 nm: (a) εr = –
14.88 and (b) εr = –14.88 – j0.39. The diagonal values are obtained from Equations (8) and (9) when n 
= m (n = 1, 2, …, 10), and the off-diagonal values are obtained from Equations (8) and (9) when n ≠ m. 
* Cells highlighted in yellow indicate that the numerical values of the diagonal cells approach 1.  

The orthogonality changes slightly but remains almost constant despite the inclusion of an 
imaginary part in the permittivity of the metal. The field profiles of the PS and the DCS in Figure 4(d) 
and 4(e) change slightly, although εr,m becomes –14.88 – j0.39. Figure 5(b) shows the orthogonal results 
of Equations (8) and (9) among the first 10 DCS modes, when εr,m is –14.88 – j0.39. The solved results 
are very similar to Figure 5(a), even though the imaginary part of the permittivity is included. For the 
first 10 modes of the DCS, the values from Equations (8) and (9) are within [1.0064, 1.0085] for the 
identical modes, while the values are within [4.945 × 10–5, 0.00343] for different modes. Therefore, the 
orthogonal relationships are almost the same when εr,m is –14.88, where an orthogonal set is almost 
remains. As the relationships of the next 40 DCS modes are considered, the orthogonal properties are 
maintained. Although the orthogonality for the real metal case is not completely satisfied, it is not 
enough to affect the accuracy of transmittance. Despite this incomplete orthogonality, the 
transmission characteristics are mainly determined by the fundamental mode, so that the accurate 
results can still be maintained. The field profiles by higher-order modes change more, but the higher-
order modes do not significantly affect the slit transmission. 

The guide wavelengths λg of the DCS, as well as that of the PS modes, are also investigated to 
allow the transmission fundamentals to be understood. The λg value of the first PS mode is 4.382, 
when the gap width 2g is 4 nm and the permittivity of Ag εr,m is –14.88. By contrast, the λg value of 
the first DCS mode is purely imaginary and roughly –j3.859 under the same conditions. This is 
significantly greater than the imaginary parts of the PS listed in Table 2, demonstrating the λg value 
of the DCS attenuates significantly and cannot contribute to the transmission. Therefore, the DCS 
modes do not contribute to the transmission but perform a complete orthogonal set for the MMT [10]. 

5. Conclusions 

In this paper, resonant transmission phenomena through a single metallic subwavelength slit 
were investigated, when the permittivity of Ag was changed with varying frequencies. The concept 
of the MIM waveguide was adopted for the single metallic slit, and the complex permittivity of real 
metal was considered regarding the MIM waveguide. The eigenvalues of the MIM waveguide were 
then applied to the MMT, and the transmittances were solved. The periodic transmission 
characteristics versus the thicknesses of the plate were obtained as a function of metallic permittivity, 
and their periodicities were easily understood using each guide wavelength. The imaginary parts of 

(a) DCS 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 7th mode 8th mode 9th mode 10th mode
1st mode 1.01105 0.00005 0.00008 0.00011 0.00014 0.00016 0.00019 0.00021 0.00023 0.00024
2nd mode 0.00005 1.01096 0.00024 0.00033 0.00041 0.00049 0.00056 0.00062 0.00068 0.00073
3rd mode 0.00008 0.00024 1.01078 0.00054 0.00068 0.00081 0.00092 0.00103 0.00112 0.00120
4th mode 0.00011 0.00033 0.00054 1.01053 0.00093 0.00111 0.00127 0.00141 0.00154 0.00165
5th mode 0.00014 0.00041 0.00068 0.00093 1.01022 0.00139 0.00159 0.00177 0.00193 0.00207
6th mode 0.00016 0.00049 0.00081 0.00111 0.00139 1.00986 0.00189 0.00211 0.00229 0.00246
7th mode 0.00019 0.00056 0.00092 0.00127 0.00159 0.00189 1.00946 0.00241 0.00262 0.00281
8th mode 0.00021 0.00062 0.00103 0.00141 0.00177 0.00211 0.00241 1.00904 0.00292 0.00312
9th mode 0.00023 0.00068 0.00112 0.00154 0.00193 0.00229 0.00262 0.00292 1.00861 0.00340
10th mode 0.00024 0.00073 0.00120 0.00165 0.00207 0.00246 0.00281 0.00312 0.00340 1.00817

(b) DCS 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 7th mode 8th mode 9th mode 10th mode
1st mode 1.00851 0.00005 0.00008 0.00011 0.00014 0.00016 0.00019 0.00021 0.00023 0.00024
2nd mode 0.00005 1.00845 0.00024 0.00033 0.00041 0.00049 0.00056 0.00062 0.00068 0.00073
3rd mode 0.00008 0.00024 1.00833 0.00055 0.00068 0.00081 0.00092 0.00103 0.00112 0.00120
4th mode 0.00011 0.00033 0.00055 1.00816 0.00094 0.00111 0.00127 0.00141 0.00154 0.00165
5th mode 0.00014 0.00041 0.00068 0.00094 1.00794 0.00141 0.00160 0.00177 0.00193 0.00207
6th mode 0.00016 0.00049 0.00081 0.00111 0.00141 1.00768 0.00191 0.00211 0.00229 0.00246
7th mode 0.00019 0.00056 0.00092 0.00127 0.00160 0.00191 1.00740 0.00243 0.00263 0.00281
8th mode 0.00021 0.00062 0.00103 0.00141 0.00177 0.00211 0.00243 1.00709 0.00294 0.00313
9th mode 0.00023 0.00068 0.00112 0.00154 0.00193 0.00229 0.00263 0.00294 1.00676 0.00343
10th mode 0.00024 0.00073 0.00120 0.00165 0.00207 0.00246 0.00281 0.00313 0.00343 1.00643
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the permittivities for real metals were subsequently included to obtain corresponding transmittance 
characteristics. Similarly, the periodicities and attenuations were understood, thanks to the guide 
wavelengths of the MIM geometry. Finally, the orthogonal properties among the eigenvalues of the 
DCS were investigated for given lossy and lossless real metals in order to investigate the validity of 
their MMT formulations. For all cases, the orthogonal relationships among the same modes were 
obtained at approximately one, while the orthogonal relationships among different modes were 
obtained at no more than 0.0034. Therefore, the MMT formulations, even for the lossy cases, were 
deemed reasonable to solve transmittances. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Physical 
meaning of resonant transmission when 2g = 4 nm, Figure S2: Physical meaning of resonant transmission when 
2g = 8 nm. 
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